A Fractional Probability Calculus View of Allometry

نویسنده

  • Bruce J. West
چکیده

The scaling of respiratory metabolism with body size in animals is considered by many to be a fundamental law of nature. An apparent corollary of this law is the scaling of physiologic time with body size, implying that physiologic time is separate and distinct from clock time. However, these are only two of the many allometry relations that emerge from empirical studies in the physical, social and life sciences. Herein, we present a theory of allometry that provides a foundation for the allometry relation between a network function and the size that is entailed by the hypothesis that the fluctuations in the two measures are described by a scaling of the joint probability density. The dynamics of such networks are described by the fractional calculus, whose scaling solutions entail the empirically observed allometry relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Probability Measure and Its Properties

Based on recent studies by Guy Jumarie [1] which defines probability density of fractional order and fractional moments by using fractional calculus (fractional derivatives and fractional integration), this study expands the concept of probability density of fractional order by defining the fractional probability measure, which leads to a fractional probability theory parallel to the classical ...

متن کامل

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

Certain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators

The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...

متن کامل

Fractional Calculus, Anomalous Diffusion, and Probability

Ideas from probability can be very useful to understand and motivate fractional calculus models for anomalous diffusion. Fractional derivatives in space are related to long particle jumps. Fractional time derivatives code particle sticking and trapping. This probabilistic point of view also leads to some interesting extensions, including vector fractional derivatives, and tempered fractional de...

متن کامل

SLIDING MODE CONTROL BASED ON FRACTIONAL ORDER CALCULUS FOR DC-DC CONVERTERS

The aim of this paper is to design a Fractional Order Sliding Mode Controllers (FOSMC)for a class of DC-DC converters such as boost and buck converters. Firstly, the control lawis designed with respect to the properties of fractional calculus, the design yields an equiv-alent control term with an addition of discontinuous (attractive) control law. Secondly, themathematical proof of the stabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systems

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014